

基于改进的主成分分析法宽带光谱反射率重建

赵海,李宏宁*,陈豪,高雅孺,杨鑫

云南师范大学物理与电子信息学院,云南昆明 650500

摘要为了降低光谱反射率重建设备的复杂度和成本并且在宽带光谱上进行更高精度的反射率重建,采用宽带多光谱 成像的方法,将投影仪的红、绿、蓝三色光作为光源,用彩色数码相机对光谱图像进行采样。在主成分分析法的基础上引 入加权系数,以及误差校正函数,利用改进后的方法重建色卡、染色纸张、油画表面的反射率。选取表征反射率重建精度 的均方根误差、拟合度系数、光谱匹配偏度指数3个指标,对所提方法与主成分分析法和加权伪逆法的重建结果进行对 比,结果表明:所提方法的重建精度较主成分分析法提高了约45%,较加权伪逆法提高了约30%;由所提方法计算的反射 率重建的颜色色差值也优于后两者。

关键词 光谱学;光谱反射率重建;主成分分析法;加权系数;误差校正 中图分类号 O433 **文献标志码** A

DOI: 10.3788/AOS222119

1 引 言

光谱成像技术具有图谱合一的特点,在彩色成像、 文化遗产和艺术品研究等领域得到了广泛应用^[1-3]。 通过成像设备和算法重建出物体固有的、与设备和光 照都无关的光谱反射率,对出版印刷业、艺术品扫描存 档等具有重要意义^[4]。通过光谱成像重建的物体表面 反射率是各种应用的关键,反射率重建通常使用窄带 光谱和宽带光谱反射率重建两种方法。

传统的颜色复制技术是利用相关设备直接通过 RGB值进行复制,这种方法会受到同色异谱的影响, 导致颜色复制不够准确。为了使颜色复制更加精准, 诞生了基于光谱信息的颜色复制技术,将光谱反射率 作为颜色信息传递的媒介,确保复制后的颜色与实际 颜色一致^[5]。在与颜色重建有关的光谱成像研究中, 经常采用宽带光谱反射率重建方法。Li等^[6]利用5种 不同LED光源组成一个照明面板,使用伪逆法重建光 谱反射率并分析了患白粉病植物叶片的光谱。LED 的功率较低并且面板设计有缺陷,导致照明范围有限 且不同颜色的LED照明区域不重合,这些可能会影响 最终的反射率重建精度。梁金星等[7]提出一种基于相 机响应值扩展和局部反距离加权优化的光谱重建方 法,仅用单幅彩色图像便能重建出光谱反射率,并且证 明了引入加权系数能有效提高反射率重建精度。但是 利用单幅彩色图像的RGB值来选择局部最优训练样 本容易受到同色异谱现象的影响,这可能导致样本的 选取不够准确。Agahian等^[8]提出一种利用加权主成 分分析(PCA)实现三刺激值光谱数据恢复的方法,根 据样本数据集和待测样本之间的色差,给样本赋予不 同的权重,再结合 PCA 进行反射率重建。与传统 PCA 法相比,该方法的精度明显提高,但仅在D65光 源下计算样本间的色差值,同样可能产生同色异谱的 现象,导致样本权重赋值出现差错,从而影响反射率重 建精度。

为了降低设备的复杂度和成本并且在宽带光谱上 进行反射率重建,本文在投影仪的红、绿、蓝三色光源 下,用彩色相机对光谱图像进行采样^[9],并对 PCA 法 进行改进,结合加权系数和误差校正函数对光谱反射 率进行重建。相较于加权伪逆法和传统 PCA法,本文 方法能得到重建精度更高的反射率。

2 基本原理

2.1 光谱反射率重建原理

相机成像原理如图 1 所示,其中: $R(\lambda)$ 表示光谱反 射率; $C(\lambda)$ 表示相机的光谱灵敏度函数,它包含相机 光学系统的透射率和光学元件的光谱敏感度函数; $S(\lambda)$ 表示所用光源的光谱功率分布函数。在本实验 中 λ 的取值范围为 400~700 nm。假设光电转换在彩 色数码相机中是线性模型,像素点在第j个通道的响 应值可表示为

$$I_{j} = \int_{400}^{700} S(\lambda)C(\lambda)R(\lambda)d\lambda + t_{j} + p_{j}, \qquad (1)$$

收稿日期: 2022-12-08; 修回日期: 2022-12-26; 录用日期: 2023-01-11; 网络首发日期: 2023-02-07

基金项目: 云南师范大学研究生科研创新基金(YJSJJ22-A18)

通信作者: *lihongning_ynnu@126.com

式中: t_j 为相机暗电流; p_j 为系统整体噪声,可以通过去除暗电流和校正光照不均匀性来消除噪声^[7]; $S(\lambda)$ 和 $C(\lambda)$ 均为与系统有关的光谱函数,可将这2个函数合 并为一个光谱响应函数 $Q(\lambda)$,即 $Q(\lambda) = S(\lambda)C(\lambda)$ 。 在忽略噪声和暗电流影响后,式(1)可改写为矩阵 形式:

$$I = Q \cdot R_{\circ} \tag{2}$$

假设有一个转换矩阵*M*,重建的反射率*R*_x可表示为

$$\boldsymbol{R}_{\mathrm{X}} = \boldsymbol{M} \boldsymbol{\cdot} \boldsymbol{I}_{\mathrm{X}}, \qquad (3)$$

式中:Ix为待测反射率对应的相机响应值。

图 1 相机成像原理 Fig. 1 Camera imaging principle

2.2 改进PCA法的光谱反射率重建

求光谱反射率的关键是求转换矩阵*M*,最常用的 方法有伪逆法和PCA法。伪逆法是最基础的光谱重 建算法之一,它的主要思想是使重构光谱值与原始光 谱值的均方根误差达到最小^[10-11]。加权伪逆法是基于 伪逆法改进的一种算法,其原理是先使用欧氏距离公 式计算测试样本和训练样本的RGB色度距离,再根据 色度距离判断光谱的相似性并赋予权重^[12]。PCA法 是一种降维统计方法,通过正交变换,将其分量相关的 元随机向量转化成分量不相关的新随机向量^[10]。

将反射率样本矩阵表示为*R_{m×n}*,其中*m*为数据集 中光谱反射率的维度,*n*为样本数量。*R*可以通过一系 列正交函数进行线性组合,它可以表示为*l*个矢量的 线性组合,即

$$R = \sum_{i=1}^{l} b_i a_i = B \cdot A, \qquad (4)$$

式中:向量组 $B = (b_1, b_2, b_3, \dots, b_i); b_i$ 为提取的特征 向量;A为转换系数。计算基向量的常用方法是PCA 法。对R进行奇异值分解,得到

$$R = U \cdot S \cdot V^{\mathrm{T}}, \tag{5}$$

式中: $U = RR^{T}$; $V = R^{T}R$; S为对角矩阵, 对角线上的 值 是 U 或 V 特 征 值 的 平 方 根^[13], S = 第 43 卷 第 9 期/2023 年 5 月/光学学报

diag $[\lambda_1, \lambda_2, \cdots, \lambda_p]_{\circ}$

设累计贡献率为*u*,*c*为达到累计贡献率时对应的特征值个数,根据特征值计算累计贡献率方法如下(取 *u*≥0.996):

$$u = \sum_{i=1}^{c} \lambda_i \bigg/ \sum_{i=1}^{p} \lambda_{i\circ}$$
(6)

根据*c*的值确定特征向量个数,进而得到*B*的值。 将式(4)代入式(2),可得:

$$I = Q \cdot B \cdot A_{\circ} \tag{7}$$

用 Q^+ 、 B^+ 、 A^+ 表示Q、B、A的伪逆矩阵,则

$$A = B^+ \cdot Q^+ \cdot I_\circ \tag{8}$$

令 $D = B^+Q^+$,那么A = DI,进一步可得 $D = (A \cdot$

 I^{T})• $(I \cdot I^{\mathrm{T}})^{-1}$,则重建反射率 R_{X} 为

$$\boldsymbol{R}_{\mathrm{X}} = \boldsymbol{B} \boldsymbol{\bullet} \boldsymbol{D} \boldsymbol{\bullet} \boldsymbol{I}_{\mathrm{X}} = \boldsymbol{B} \boldsymbol{\bullet} (\boldsymbol{A} \boldsymbol{\bullet} \boldsymbol{I}^{\mathrm{T}}) \boldsymbol{\bullet} (\boldsymbol{I} \boldsymbol{\bullet} \boldsymbol{I}^{\mathrm{T}})^{-1} \boldsymbol{\bullet} \boldsymbol{I}_{\mathrm{X} \circ} \qquad (9)$$

以上就是PCA重建光谱反射率的方法,由于其在 精度上还是有所不足,本实验对PCA法进行如下 改进。

在 RGB 颜色空间中, 计算投影仪光源照射下的待 测物体颜色与训练样本集颜色的欧氏距离, 得到

$$\frac{c_{j}}{\sqrt{\sum_{k=1}^{3} \left[(r_{k, \text{test}} - r_{k, j})^{2} + (g_{k, \text{test}} - g_{k, j})^{2} + (b_{k, \text{test}} - b_{k, j})^{2} \right]}} (j=1, 2, 3, \cdots, n),$$
(10)

式中:k=1,2,3,表示不同类型的光源。

本实验选取 31 个与待测样本的欧氏距离最小的 训练样本作为局部最优的训练样本集 R_1 , 计算 R_1 中所 有样本的反距离加权权重 ω_p , 得到

$$\omega_p = \frac{1}{e_p + \sigma} (p = 1, 2, 3, \dots, 31),$$
 (11)

式中:e_p为训练样本与待测样本的欧氏距离;o为一个 很小的正数,是为了避免出现分母为0的情况引入的。 用W表示反距离加权权重矩阵,则

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{\omega}_1 & \cdots & 0\\ \vdots & \vdots\\ 0 & \cdots & \boldsymbol{\omega}_p \end{bmatrix}_{p \times p}$$
(12)

PCA法中同等对待每一个样本,但在现实中,各个指标的重要性不等,甚至差异很大。在这种情况下 需要用加权方法对PCA予以修正^[14]。对式(4)进行变 形,得到

$$\boldsymbol{R}' = \boldsymbol{R}_1 \boldsymbol{\cdot} \boldsymbol{W} = \boldsymbol{B}' \boldsymbol{\cdot} \boldsymbol{A}'_{\circ} \tag{13}$$

对
$$R'进行奇异值分解,得到$$

 $R' = U' \cdot S' \cdot (V')^{\mathrm{T}},$ (14)

式中: $U' = RW(RW)^{T}$; $V' = (RW)^{T}RW$ 。同样根据 式(6)计算累计贡献率,确定主成分个数c,然后得到B'的值。筛选出的31个样本反射率 R_1 对应的相机响应 值为 I_1 ,加入权重矩阵后,式(2)可表示为

$$I_2 = I_1 \cdot W = Q \cdot R'_{\circ} \tag{15}$$

将式(13)代人式(15),可得

$$A' = (B')^+ \cdot (Q)^+ \cdot I_{20}$$
 (16)

$$(B')^{\top}(Q')^{\top} = D', 那么D'可表示为$$

$$D' = A' \cdot I_2^{\mathsf{T}} \cdot \left(I_2 \cdot I_2^{\mathsf{T}} \right)^{\mathsf{T}}, \qquad (17)$$

则待测反射率的计算公式为

$$\boldsymbol{R}_{\mathrm{X}} = \boldsymbol{B}' \boldsymbol{\cdot} \boldsymbol{A}' = \boldsymbol{B}' \boldsymbol{\cdot} \boldsymbol{A}' \boldsymbol{\cdot} \boldsymbol{I}_{2}^{\mathrm{T}} \boldsymbol{\cdot} \left(\boldsymbol{I}_{2} \boldsymbol{\cdot} \boldsymbol{I}_{2}^{\mathrm{T}}\right)^{-1} \boldsymbol{\cdot} \boldsymbol{I}_{\mathrm{X}} \qquad (18)$$

已有研究结果表明,双光源模式能有效提高光谱 重构精度[15],而本实验中为了尽可能简化实验装置,选 择单个投影仪作为光源,这会导致最终重建的光谱反 射率存在较大的误差。因此,引入误差校正函数项,对 未加校正项时重建的与待测样本最相关的200个反射 率和标准反射率进行对比,计算他们各自的误差,生成 误差样本矩阵 R_{eo} 假设有一个标准的转换矩阵 F_{1} 、样 本计算出的转换矩阵 F_2 、标准反射率样本 R_1 、计算出 的反射率 R_2 ,那么由伪逆法可知, $(F_1 - F_2)I_x = F$. $I_{\rm X} = R_1 - R_2 = R_{\rm eo}$ 因此,本实验产生的误差和色块 在三色光下的相机响应值近似呈线性关系,即

$$\boldsymbol{R}_{o} = \boldsymbol{F} \boldsymbol{\cdot} \boldsymbol{I}_{\mathrm{X}}, \qquad (19)$$

式中:F为线性关系的转换矩阵,也就是本实验要计算 的矩阵,通过误差样本和对应的相机响应值之间的关 系可得到F矩阵。因此,改进后测试样本的反射率重 建公式为

$$\boldsymbol{R}_{\mathrm{X}} = \boldsymbol{B}' \boldsymbol{\cdot} \boldsymbol{A}' = \left[\boldsymbol{B}' \boldsymbol{\cdot} \boldsymbol{A}' \boldsymbol{\cdot} \boldsymbol{I}_{2}^{\mathrm{T}} \boldsymbol{\cdot} \left(\boldsymbol{I}_{2} \boldsymbol{\cdot} \boldsymbol{I}_{2}^{\mathrm{T}} \right)^{-1} - \boldsymbol{F} \right] \boldsymbol{\cdot} \boldsymbol{I}_{\mathrm{X}\circ} \quad (20)$$

实验结果和分析 3

实验设备摆放如图2所示,样本距离相机2m,投

图2 设备摆放图 Fig. 2 Device layout diagram

第 43 卷 第 9 期/2023 年 5 月/光学学报

影仪以45°角进行光照,投影仪本身与相机在同一水平 线上,相机垂直于待测物体。使用Canon 5D Mark3数 码相机进行图像采集,相机参数设置如下:红光下,感 光度(IOS)为400,曝光时间为1/60s,光圈大小为f/ 4.0;绿色光下, IOS为400,曝光时间为1/60s,光圈大 小为 f/8.0; 蓝光下, IOS 为 400, 曝光度时间为 1/80 s, 光圈大小为 f/5.6。将 EPSON-EB-C301MS 投影仪作 为光源,用X-Rite 64分光光度计采集400~700 nm范 围内31个样本的反射率数据。

SG140色卡的色块颜色多样性好,在色域中的分 布范围广,同时包含了一定数量的人类肤色和不同灰 阶的中性色色块,因此适合用于生成模拟数据^[16]。取 SG140色卡(图3)中第16、51、61、123号色块重建反射 率,结果如图4所示。

图 3 SG140 色卡 Fig. 3 SG140 color card

光谱精度方面,主要采用光谱均方根误差[17] (RMSE)、拟合度系数(GFC)、光谱匹配偏度指数 (ISSD)3个指标进行评价。光谱RMSE表征任意两 条光谱曲线在每个波长的平均数值差异程度,GFC表 征任意两条光谱曲线的整体形状相似程度,这两个指 标在评价光谱曲线方面相互补充^[18]。SG140色卡对应 的精度数据如表1所示,其中编号1、2、3、4对应SG140 色卡的16、51、61、123色块。

RMSE 越小,光谱重建效果越好;GFC 越接近1, 光谱重建效果越好;ISSD越小,光谱匹配程度越高。 从以上误差数据来看:本文方法的RMSE最大值为 0.05505,最小值为0.00961,平均值为0.02537;本文 方法的GFC都在0.99以上;最大ISSD为0.03862,最

	表1 SG140色卡反射率重建精度对比
Table 1	Accuracy comparison of reflectance reconstruction of SG140 color card

No.	Proposed method			PCA			Weighted pseudo inverse		
	RMSE	GFC	ISSD	RMSE	GFC	ISSD	RMSE	GFC	ISSD
1	0.01299	0.99987	0.03862	0.11041	0.97804	0.28773	0.03268	0.99881	0.09058
2	0.05505	0.99367	0.00710	0.07794	0.99328	0.10803	0.05221	0.99758	0.07285
3	0.02384	0.99993	0.02486	0.03802	0.99924	0.02010	0.01354	0.99991	0.00751
4	0.00961	0.99943	0.01829	0.03204	0.992534	0.01510	0.02559	0.99550	0.02600

图4 重建的 SG140 色卡反射率。(a) Path #16;(b) path #51;(c) path #61;(d) path #123 Fig. 4 Reconstructed reflectance of SG140 color card. (a) Path #16; (b) path #51; (c) path #61; (d) path #123

小 ISSD 为 0.00710。 PCA 方法和加权伪逆法的 RMSE 与本文方法相比效果较差。

射率重建精度变化,分别计算引入误差样本矩阵R。前

为了分析改进前[式(18)]、后[式(19)、(20)]的反

后 SG140 色卡反射率的 RMSE 并绘制直方图,如图 5 所示。没有 *R*。时均方根误差之和为 4.6794, 有 *R*。后均 方根误差之和为 2.4995。

(a) 30 25 20 15 10 5 0 0 0.04 0.08 0.12 0.16RMSE

图 5 引入 *R*_e前后 SG140 色卡重建反射率的 RMSE 直方图。(a)未加入 *R*_e均方根误差直方图;(b)加入 *R*_e后均方根误差直方图 Fig. 5 RMSE histograms of reconstructed reflectance of SG140 color cards before and after the introduction of *R*_e. (a) RMSE histogram before adding *R*_e; (b) RMSE histogram after adding *R*_e

对4张用颜料染色的纸(图6)进行反射率重建,结果如图7所示。它们对应的3种衡量反射率重建精度的参数如表2所示,其中编号 $I \sim N$ 分别对应图 $6(a)\sim(d)$ 所示的染色纸张。

从表2所示的误差数据来看:本文方法的RMSE 最大值为0.05747,最小值为0.02165,平均值为 0.03876;本文方法的GFC都在0.98以上;最大ISSD 为0.13414,最小ISSD为0.02815。可见,本文方法对 染色纸张的整体重建效果较SG140色卡差一些,可能 是由颜料涂抹不均匀导致的。

选取图8所示油画上A、B、C、D4个点进行反射率重建实验,结果如图9所示,对应的3种衡量反射率 重建精度的参数如表3所示。

从表3所示的误差数据情况来看:本文方法的 RMSE最大值为0.03801,最小值为0.00941,平均值 为0.02515;本文方法的GFC都在0.99以上;最大 ISSD为0.03888,最小ISSD为0.01159。

在本实验条件下分别画出3种方法计算的SG140

图 6 不同颜料染色的纸张。(a)钛白;(b)赭石;(c)三青;(d)石绿

Fig. 6 Paper dyed with different pigments. (a) Titanium dioxide; (b) ochre; (c) cyanine; (d) stone green

图 7 重建的染色纸张反射率结果。(a)钛白;(b)赭石;(c)三青;(d)石绿 Fig. 7 Reconstructed reflectance results of dyed paper. (a) Titanium dioxide; (b) ochre; (c) cyanine; (d) stone green

	表2 染色纸张的反射率重建精度对比	
Table 2	Accuracy comparison of reflectance reconstruction of dyed paper	er

No.	Proposed method			PCA			Weighted pseudo inverse		
	RMSE	GFC	ISSD	RMSE	GFC	ISSD	RMSE	GFC	ISSD
Ι	0.05747	0.99911	0.05452	0.08432	0.99690	0.06624	0.05404	0.99827	0.02686
П	0.02165	0.99677	0.05604	0.03253	0.99413	0.12449	0.03559	0.99014	0.08449
Ш	0.03279	0.98741	0.02815	0.03636	0.99036	0.15416	0.03065	0.99324	0.13417
IV	0.04312	0.99466	0.13414	0.07674	0.99758	0.26927	0.06321	0.99829	0.22072

色卡 RMSE 分布图,结果如图 10 所示。可以看到,本 文方法计算的反射率 RMSE 集中在 0~0.08 范围内。 PCA 法的 RMSE 虽然大部分集中在 0~0.08,但在 0.08~0.12 范围内仍有较少的分布,它们不能忽略。 加权伪逆法的 RMSE 大部分集中在 0~0.08,在 0.08~0.12 范围内也有较少的分布,但其分布数量比 PCA 法少。进一步计算了 RMSE 之和,本文方法的 RMSE 之和为 2.4995, PCA 法为 4.5812, 加权伪逆法 为3.4851,本文方法的重建精度相比于PCA法提升了约45%,相比于加权伪逆法提升了约30%。

为了更加直观地对比3种方法的重建效果,在 D65光源下根据计算的反射率对颜色进行重建,重建 结果如图11所示,这里只重建SG140色卡中对应的4 个色块。它们的CIEDE2000色差值如表4所示。

色差值越小,两种颜色越接近。利用本文方法计 算的反射率重建颜色时,色差平均值为1.8880,利用

图 8 实验中所用的油画 Fig. 8 Oil painting used in the experiment

Fig. 9 Reconstructed reflectance of certain points on the surface of the oil painting. (a) Reflectance of point A on the surface of the oil painting; (b) reflectance of point B on the surface of the oil painting; (c) reflectance of point C on the surface of the oil painting; (d) reflectance of point D on the surface of oil painting

表3 油画表面的反射率重建精度对比	
-------------------	--

0.99669

0.99206

0.06320

0.12976

Point	Proposed method			PCA			Weighted pseudo inverse		
	RMSE	GFC	ISSD	RMSE	GFC	ISSD	RMSE	GFC	ISSD
A	0.00941	0.99819	0.01159	0.01955	0.99679	0.12635	0.01099	0.99843	0.03531
В	0.03801	0.99029	0.03888	0.12056	0.96333	0.20296	0.09712	0.95924	0.02711

0.06742

0.03695

Table 3 Accuracy comparison of reflectance reconstruction of oil painting surface

PCA法重建颜色的色差平均值为5.9110,利用加权伪 逆法重建颜色的色差平均值为2.8620,可见本文方法 的效果更好。

0.99863

0.99660

0.02260

0.01655

4 总 结

0.03350

0.01967

C

D

在PCA方法的基础上,通过引入权重因子和误差

校正项,提出一种改进的宽带光谱重建方法,该方法提高了光谱反射率的重建精度,与PCA法和加权伪逆法相比,其重建的反射率精度都有提升,但是根据欧氏距离来选择局部训练样本时,若样本数量很大,对算力的要求很高,因此,所提方法不适用于要求快速重建反射率的情况。

0.07236

0.01519

0.99701

0.99804

0.08552

0.03345

图 10 待测样本的 RMSE 直方图。(a)本文方法;(b) PCA法;(c)加权伪逆法

Fig. 10 RMSE histograms of samples to be tested. (a) Proposed method; (b) PCA method; (c) weighted pseudo inverse method

- 图 11 颜色重建效果对比。(a)标准反射率重建的颜色;(b)本文方法重建的颜色;(c)PCA法重建的颜色;(d)加权伪逆法重建的颜色
- Fig. 11 Comparison of color reconstruction effect. (a) Color reconstructed by standard reflectance; (b) color reconstructed by proposed method; (c) color reconstructed by PCA method; (d) color reconstructed by weighted pseudo inverse method

表4 3种方法的CIEDE2000色差	皇值
---------------------	----

Table 4 Color difference values of CIEDE2000 using three methods								
Method Path #16 Path #51 Path #61 Path #1								
Proposed	0.9954	4.0280	1.2679	1.2605				
PCA	5.3812	6.1978	6.6691	5.3960				
Weighted pseudo inverse	2.0916	2.8403	2.3527	4.1635				

参考文献

- Yuen P W T, Richardson M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition[J]. The Imaging Science Journal, 2010, 58(5): 241-253.
- [2] Tominaga S, Tanaka N. Spectral image acquisition, analysis, and rendering for art paintings[J]. Journal of Electronic Imaging, 2008, 17(4): 043022.
- [3] Liang H D. Advances in multispectral and hyperspectral imaging for archaeology and art conservation[J]. Applied Physics A, 2012, 106(2): 309-323.
- [4] Zhang W F. Spectral reflectance reconstruction method based on support vector regression[J]. Computer Science, 2010, 37(12):

214-242, 269.

[5] 龚冬冬.基于多光谱成像系统的光谱重建研究[D].昆明:云南师范大学,2020.

Gong D D. Research on spectrum reconstruction based on multispectral imaging system[D]. Kunming: Yunnan Normal University, 2020.

- [6] Li H N, Feng J, Yang W P, et al. Multi-spectral imaging using LED illuminations[C]//2012 5th International Congress on Image and Signal Processing, October 16-18, 2012, Chongqing, China. New York: IEEE Press, 2013: 538-542.
- [7] 梁金星,万晓霞.彩色数码相机单幅RGB图像光谱重建研究
 [J].光学学报,2017,37(9):0933001.
 Liang J X, Wan X X. Spectral reconstruction from single RGB image of trichromatic digital camera[J]. Acta Optica Sinica, 2017, 37(9):0933001.

- [8] Agahian F, Amirshahi S A, Amirshahi S H. Reconstruction of reflectance spectra using weighted principal component analysis
 [J]. Color Research & Application, 2008, 33(5): 360-371.
- [9] Zhang J J, Meuret Y, Wang X G, et al. Improved and robust spectral reflectance estimation[J]. LEUKOS, 2021, 17(4): 359-379.
- [10] Shimano N. Evaluation of a multispectral image acquisition system aimed at reconstruction of spectral reflectances[J]. Optical Engineering, 2005, 44(10): 107005.
- [11] Shen H L, Wan H J, Zhang Z C. Estimating reflectance from multispectral camera responses based on partial least-squares regression[J]. Journal of Electronic Imaging, 2010, 19(2): 020501.
- [12] 付晓凡,徐杨,李长军.图像线性化对光谱反射率重建精度的 影响研究[J].激光与光电子学进展,2021,58(14):1433001.
 Fu X F, Xu Y, Li C J. Research on the influence of image linearization on reconstruction accuracy of spectral reflectance[J]. Laser & Optoelectronics Progress, 2021, 58(14):1433001.
- [13] Baker K. Singular value decomposition tutorial[D]. Columbus: Ohio State University, 2013.
- [14] 周忠明.加权主成份分析在多指标综合评价中的运用[J].数理 统计与管理, 1985, 4(5): 16-21.

Zhou Z M. Application of weighted principal component analysis

第43卷第9期/2023年5月/光学学报

in multi-index comprehensive evaluation[J]. Application of Statistics and Management, 1985, 4(5): 16-21.

- [15] 陈奕艺,徐海松,张显斗.基于数码相机的光谱重构研究[J]. 光学学报,2009,29(5):1416-1419.
 Chen Y Y, Xu H S, Zhang X D. Research on spectral reconstruction based on digital camera[J]. Acta Optica Sinica, 2009,29(5):1416-1419.
- [16] 鲁洋, 徐海松.基于单幅多光谱图像的照明光谱估计方法[J]. 光学学报, 2022, 42(7): 0733001.
 Lu Y, Xu H S. Illumination spectrum estimation method based on single multispectral image[J]. Acta Optica Sinica, 2022, 42 (7): 0733001.
- [17] Imai F H, Rosen M R, Berns R S. Comparative study of metrics for spectral match quality[J]. Conference on Colour in Graphics, Imaging, and Vision, 2002, 2002(1): 492-496.
- [18] 方新怡,万晓霞,史硕,等.基于稀疏表示的多光谱颜色数据 降维方法研究[J]. 激光与光电子学进展,2021,58(22): 2230003.

Fang X Y, Wan X X, Shi S, et al. Multi-spectral color data dimension reduction model research based on sparse representation[J]. Laser & Optoelectronics Progress, 2021, 58 (22): 2230003.

Broadband Spectral Reflectance Reconstruction Based on Improved Principal Component Analysis

Zhao Hai, Li Hongning^{*}, Chen Hao, Gao Yaru, Yang Xin

School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan, China

Abstract

Objective Spectral imaging technology, capable of integrating images and spectra, is widely used and has developed rapidly in the fields of color imaging, cultural heritage, artwork research, etc. Traditional color replication technology uses related equipment for direct replication through RGB values, which is affected by the isochromatic spectrum and results in inaccurate color replication. For more accurate color reproduction, spectral reflectance can be used as a medium for color information transmission to ensure that the reproduced color is the same as the actual color. Spectral reflectance reconstruction is an important research topic in optics. Its purpose is to reconstruct the spectral reflectance of an object through the equipment-related RGB values obtained by various imaging equipment, which is independent of equipment and illumination. Some traditional reflectance reconstruction methods, such as the principal component analysis and the pseudo-inverse method, are still insufficient in accuracy. There are also some improved methods based on them. For instance, the reflectance reconstruction method using a single lighting image combined with the weighted pseudo-inverse method can reduce the collected lighting images, but the matching information between colors is less. Therefore, the requirements for experimental conditions become higher, and there may be a homochromatic phenomenon affecting the reconstruction accuracy. To reduce the complexity and cost of spectral reflectance reconstruction equipment and achieve more accurate reflectance reconstruction on the wideband spectra, this study improves the principal component analysis and reconstructs spectral reflectance by combining the weighting coefficient and error correction function.

Methods In this paper, a wideband multispectral imaging method is adopted. The red, green, and blue light of a projector is used as the light source to illuminate the surface of an object, and the spectral images are sampled by a color digital camera. According to the Euclidean distance relation, the experimental samples are sorted, and the 31 samples most relevant to the test samples are selected as the locally optimal training samples. The weight factor is added on the basis of the principal component analysis, and an error correction item is introduced according to the pseudo-inverse method to correct the reflectance reconstructed by the weighted principal component analysis. The corrected reflectance is used as the final output. The improved method is used to reconstruct the reflectance of SG140 color cards, dyed paper,

and oil painting surfaces to verify the accuracy.

Results and Discussions The improved method, principal component analysis, and weighted pseudo-inverse method are employed to reconstruct the reflectance separately. The results show that the experimental method has improved the accuracy of the reflectance reconstruction to different degrees after comparison. According to the reflectance of the reconstructed four pieces of dyed paper (Fig. 7), three kinds of data representing the reconstruction accuracy (Table 2), and the reflectance of some points on the reconstructed oil painting surfaces (Fig. 9) and its accuracy data (Table 3), the reflectance reconstruction accuracy of the painting and oil painting surfaces can also meet the expected requirements. According to the root-mean-square error data on the reflectance of the reconstructed SG140 color cards (Fig. 10), the root-mean-square error of the method in this paper is 2. 4995, and that of the principal component analysis is 4. 5812, while that of the weighted pseudo-inverse method is 3.4851. The proposed method significantly improves the reflectance reconstruction accuracy upon the improvement in the principal component analysis.

Conclusions In the experimental analysis, three indexes (root-mean-square error, fitting coefficient, and spectral matching skewness index) are used to characterize the reflectance reconstruction accuracy and measure the reconstruction effect. The comparison with the principal component analysis and weighted pseudo-inverse method shows that the spectral reflectance reconstruction accuracy of the method in this experiment increases by about 45% on the basis of the principal component analysis. The color difference of SG140 color cards reconstructed by the three methods is further calculated, and the average value of the color difference is also smaller than that of the method proposed in this paper. The Euclidean distance between the training sample and the test sample is used to select the locally optimal training sample. When the number of samples is large, the amount of computation will be increased, which is not suitable for the situation requiring rapid reflectivity reconstruction.

Key words spectroscopy; spectral reflectance reconstruction; principal component analysis; weighting coefficient; error correction